Изотопные индикаторы - significado y definición. Qué es Изотопные индикаторы
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es Изотопные индикаторы - definición

ХИМИЧЕСКОЕ СОЕДИНЕНИЕ
Изотопные индикаторы; Индикаторы изотопные; Радиоактивная метка; Метод меченных атомов; Метод меченых атомов; Изотопные метки

Изотопные индикаторы         

вещества, имеющие отличный от природного изотопный состав и благодаря этому используемые в качестве метки при изучении самых разнообразных процессов. Роль изотопной метки выполняют стабильные или радиоактивные Изотопы химических элементов, которые легко могут быть обнаружены и определены количественно. Высокая чувствительность и специфичность И. и. позволяют проследить за ними в сложных процессах перемещения, распределения и превращения веществ в сколь угодно сложных системах, в том числе и в живых организмах.

Метод И. и. (называется также методом меченых атомов) был впервые предложен Д. Хевеши и Ф. Панетом в 1913. Широкое использование И. и. стало возможным благодаря развитию ядерной техники, позволившей получать изотопы в массовом масштабе.

Метод И. и. основан на том, что химические свойства разных изотопов одного элемента почти одинаковы (благодаря чему поведение меченых атомов в изучаемых процессах практически не отличается от поведения других атомов того же элемента), и на лёгкости обнаружения изотопов, особенно радиоактивных. При использовании метода необходим учёт возможных реакций изотопного обмена (См. Изотопный обмен), приводящих к перераспределению меченых атомов (следовательно, к потере соединением метки), а иногда и учёт радиационных эффектов, связанных с влиянием радиоактивных излучений на ход процесса. Изотоп, используемый в качестве метки, вводится в состав изучаемых соединений. Могут быть использованы как стабильные, так и радиоактивные изотопы.

Преимущество стабильных изотопов - их устойчивость и отсутствие ядерных излучений. Однако только небольшое число элементов имеет подходящие стабильные изотопы. Малая доступность последних и сравнительно сложная техника обнаружения составляют недостатки метода И. и. с применением стабильных изотопов. Преимущество радиоактивных изотопов - возможность их получения практически для всех элементов периодической системы, высокая чувствительность, специфичность и точность определения, простота и доступность измерительной аппаратуры. Поэтому большинство исследований, использующих метод И. и., выполнено с радиоактивными изотопами.

Такие элементы, как водород, углерод, сера, хлор, свинец, имеют удобные для использования как стабильные - 2H, 13C, 34S, 35Cl, 37Cl, 204РЬ, так и радиоактивные изотопы - 3H, 11C, 14C, 35S, 36C1, 212РЬ. В качестве изотопов азота и кислорода чаще всего применяются стабильные 15N и 18O и другие. Стабильные И. и. получают обогащением природных изотопных смесей путём многократного повторения операции разделения (перегонка, диффузия, термодиффузия, изотопный обмен, электролиз; см. Изотопов разделение), а также на масс-спектрометрических установках и при ядерных реакциях.

Для элементов, существующих в природе в виде одного изотопа (Be, F, Na, Al, P, I), в качестве меченых атомов используют только искусственные радиоактивные изотопы; примером часто применяемых радиоактивных изотопов служат 3H, 14C, 32P, 35S, 45Ca, 51Cr, 59Fe, 60Co, 89Sr,95Nb, 110Ag, 131I и др. Выбор радиоактивного изотопа определяется его ядерными характеристиками - периодом полураспада, типом и энергией излучения. Для индикации пригодны радиоактивные изотопы, период полураспада которых не очень мал, что позволяет работать в течение времени, необходимого для эксперимента, но и не очень велик, что даёт возможность работать с весьма малыми количествами индикатора.

Основным методом анализа стабильных изотопов служит масс-спектрометрия (чувствительность 10-4\% изотопа при точности 0,1-1\% для проб массой в доли мг). Всё большее применение находят спектральные методы и парамагнитный резонанс. Дейтерий, 18O и некоторые другие изотопы определяют по изменению показателя преломления, теплопроводности, плотности как самого элементарного вещества, так и его соединений. Радиоактивные изотопы определяют по их излучению при помощи счётчиков Гейгера или сцинтилляционных счётчиков. Так, с помощью счетчика Гейгера можно уловить излучение 10-11 г углерода 14C, 10-16 г фосфора 32Р и иода 131I, 10-19 г углерода 11C и т. д. Современные жидкостные сцинтилляционные счётчики позволяют с высокой эффективностью и точностью проводить определение изотопов с мягким бета-излучением (3H, 14C, 35S и др.). Введение в практику этого метода изотопного анализа повышает его производительность и позволяет работать с незначительными активностями, приближающимися к активности космического фона. Широкое применение в биологии получил метод авторадиографии. При работе с радиоактивными изотопами необходимо соблюдать правила техники безопасности в соответствии с существующими нормами.

Известны различные способы синтеза меченых соединений (См. Меченые соединения). Наряду с обычным химическим синтезом используются реакции изотопного обмена и биологический синтез. В большинстве случаев изотопная метка занимает определённое положение в молекуле; например, пропионовую кислоту можно пометить по углероду тремя способами: 14CH3CH2COOH, СН314СН2СООН, СН3СН214СООН.

Имеются три основных направления использования И. и. Методом И. и. изучают характер распределения веществ и пути их перемещения. И. и. вводят в ту или иную систему и через определённые промежутки времени устанавливают наличие И. и. в различных частях системы. Наиболее наглядные картины распределения получаются без разрушения образца при помощи радиоавтограмм (см. Авторадиография).

Другое направление использования И. и. - количественный анализ. Один из самых простых и распространённых вариантов метода И. и. - метод изотопного разбавления, при котором к анализируемому веществу добавляют дозированное количество И. и. и по степени его разбавления судят об исходном количестве вещества. Этот метод позволяет производить определение ничтожно малых количеств трудноопределяемых веществ и, наоборот, больших масс веществ; анализировать сложные смеси, анализ и разделение которых другими методами невозможны. Широкими возможностями отличается примыкающий к методу И. и. Активационный анализ, где меткой служит изотоп другого элемента, образованный из данного в результате ядерной реакции. Особенно большое значение этот метод имеет при определении микроэлементов в металлах, сплавах, минералах, тканях, при быстром контроле технологических процессов. Количественный анализ природных изотопов, входящих в естественные Радиоактивные ряды урана и тория, а также количественное определение изотопа 14C в умерших организмах позволяют определять возраст горных пород и археологических находок.

Третьим направлением использования И. и. является выяснение механизма различных процессов и изучение строения химических соединений. Введение изотопной метки в определённое положение молекулы устраняет химическую неразличимость атомов, допуская возможность однозначного выяснения механизма тех или иных реакций, для которых обычные химические методы описывают только начальное и конечное состояния.

Все указанные направления применения И. и. широко представлены в различных областях химии, биологии, медицины, техники, сельского хозяйства и т. д. Ниже приводятся отдельные примеры их использования.

Лит.: Радиоактивные изотопы в химических исследованиях, Л. - М., 1965; Рогинский С. З., Теоретические основы изотопных методов изучения химических реакций, М., 1956; Ядернофизические методы анализа веществ, М., 1971 (Всесоюзная научно-техническая конференция "XX лет производства и применения изотопов и источников ядерных излучений в народном хозяйстве СССР", Минск, 1968).

К. Б. Заборенко.

В биологии И. и. применяют для решения как фундаментальных, так и прикладных биологических проблем, изучение которых другими методами затруднено или невозможно. Существенное для биологии преимущество метода меченых атомов состоит в том, что использование И. и. не нарушает целостности организма и его основных жизненных отправлений. С применением И. и. связаны многие крупные достижения современной биологии, определившие расцвет биологических наук во 2-й половине 20 в. С помощью стабильных и радиоактивных изотопов водорода (2H и 3H), углерода (13C и 14C), азота (15N), кислорода (18O), фосфора (32P), серы (35S), железа (59Fe), йода (131I) и др. были выяснены и детально изучены сложные и взаимосвязанные процессы биосинтеза и распада белков, нуклеиновых кислот, углеводов, жиров и др. биологически активных соединений, а также химические механизмы их превращений в живой клетке (рис. 1 - 3). Применение И. и. привело к пересмотру прежних представлений о природе Фотосинтеза, а также о механизмах, обеспечивающих усвоение растениями неорганических веществ - карбонатов, нитратов, фосфатов и др.

С помощью И. и. выполнено огромное число исследований в самых разнообразных направлениях биологии и биохимии. Одно из направлений включает работы по изучению динамики и путей перемещения популяций в биосфере и отдельных особей внутри данной популяции, миграции микробов, а также отдельных соединений внутри организма. Вводя в организмы с пищей или путём инъекций метку, удалось изучить скорость и пути миграции многих насекомых (москитов, мух, саранчи), птиц, грызунов и др. мелких животных и получить данные о численности их популяций. В области физиологии и биохимии растений с помощью И. и. решен ряд теоретических и прикладных проблем: выяснены пути поступления минеральных веществ, жидкостей и газов в растения, а также роль различных химических элементов, в том числе микроэлементов (См. Микроэлементы), в жизни растений (рис. 4). Показано, в частности, что углерод поступает в растения не только через листья, но и через корневую систему, установлены пути и скорости передвижения ряда веществ из корневой системы в стебель и листья и из этих органов к корням. В области физиологии и биохимии животных и человека изучены скорости поступления различных веществ в их ткани (в том числе скорость включения железа в Гемоглобин, фосфора - в нервную и мышечные ткани, кальция - в кости).

Важная группа работ охватывает исследования механизмов химических реакций в организме. Так, во многих случаях удалось установить связь между исходными и вновь образующимися молекулами, проследить за "судьбой" отдельных атомов и химических групп в процессах обмена веществ, а также выяснить последовательность и скорость этих превращений. Полученные данные сыграли решающую роль при построении современных схем биосинтеза и метаболизма (метаболических карт), путей превращения пищи, лекарственных препаратов и ядов в живых организмах. К работам этой группы относится выяснение вопроса о происхождении кислорода, выделяемого в процессе фотосинтеза: оказалось, что его источником является вода, а не двуокись углерода. С другой стороны, применение 14CO2 позволило выяснить пути превращений двуокиси углерода в процессе фотосинтеза. Использование "меченой" пищи привело к новому представлению о скоростях всасывания и распространения пищевых веществ, об их "судьбе" в организме и помогло проследить за влиянием внутренних и внешних факторов (голодание, асфиксия, переутомление и т. д.) на обмен веществ. Метод И. и. позволил изучить процессы обратимого транспорта веществ через Биологические мембраны. Было показано, что концентрации веществ по обе стороны мембраны остаются постоянными с сохранением градиентов концентрации, характерных для каждой из разделённых мембранами сред.

Метод И. и. нашёл применение в исследовании процессов, решающую роль в которых играет передача информации в организме (проводимость нервных импульсов, инициация и рецепция раздражения и др.) Эффективность метода И. и. в работах этого рода обусловлена тем, что исследования проводятся на целостных, интактных организмах, сохраняющих неповрежденной всю сложную систему нервных и гуморальных связей. Наконец, группа работ включает исследования статических характеристик биологических структур, начиная с молекулярного уровня (белки, нуклеиновые кислоты) и кончая надмолекулярными структурами (рибосомы, хромосомы и др. органеллы). Например, исследования относительной устойчивости белков и нуклеиновых кислот в 1H2O, 2H2O и в H218O способствовали выяснению природы сил, стабилизирующих структуру биополимеров (См. Биополимеры), в частности роли водородных связей (См. Водородная связь) в биологических системах.

Важное значение при выборе изотопа имеет вопрос о чувствительности метода изотопного анализа, а также о типе радиоактивного распада и энергии излучения. Преимущество стабильных изотопов (2H, 18O, 15N и др.) - отсутствие излучений, часто оказывающих побочное воздействие на исследуемую живую систему. В то же время, сравнительно низкая чувствительность методов их определений (Масс-спектроскопия, Денситометрия), а также необходимость выделения меченого соединения ограничивают применение стабильных изотопов в биологии. Высокая чувствительность регистрации гамма-активных изотопов (59Fe, 131I и др.) позволила в живом организме измерить скорость кроветока, определить количество крови и время её полного кругооборота, исследовать работу желёз внутренней секреции.

Лит.: Камен М., Радиоактивные индикаторы в биологии, пер. с англ., М., 1948; Хевеши Г., Радиоактивные индикаторы, их применение в биохимии, нормальной физиологии и патологической физиологии человека и животных, пер. с англ., М., 1950; Метод меченных атомов в биологии, Изотопы в биохимии, М., 1963; Ванг Ч., Уиллис Д., Радиоиндикаторный метод в биологии, пер. с англ., М., 1969; Радиоактивные изотопы во внешней среде и организме, М., 1970.

И. Н. Верховская.

И. и. в медицине. С помощью И. И. были раскрыты механизмы развития (патогенез) ряда заболеваний; их применяют также для изучения обмена веществ и диагностики многих заболеваний (см. Радиоизотопная диагностика).И и. вводят в организм в крайне малых количествах, не способных вызвать какие-либо патологические сдвиги. Различные элементы неравномерно распределяются в организме. Аналогично им распределяются и И. и. Излучение, возникающее при распаде изотопа, регистрируют радиометрическими приборами, Скенированием, авторадиографией (См. Авторадиография) и др. Так, состояние большого и малого круга кровообращения, сердечного кровообращения, скорости кроветока, изображение полостей сердца определяют с помощью соединений, включающих 24Na, 131I, 99MTc; для изучения лёгочной вентиляции и заболеваний спинного мозга применяют 99MTc, 133Xe; макроагрегаты альбумина человеческой сыворотки с 131I используют для диагностики различных воспалительных процессов в легких, их опухолей и при различных заболеваниях щитовидной железы. Концентрационную и выделительную функции печени изучают при помощи краски бенгал-роз с 131I, 198Au; функцию почек - при ренографии c 131I-гиппураном и скенированием после введения неогидрина, меченого 203Hg или 99MTc. Изображение кишечника, желудка получают, используя 99MTc, селезёнки - применяя эритроциты с 99MTc или 51Сr; с помощью 75Se диагностируют заболевания поджелудочной железы. Диагностическое применение имеют также 85Sr и 85P.

А. В. Козлова.

И. и. в сельском хозяйстве (3H, 14C, 22Na, 32P, 35S, 42K, 45Ca, 60Co, 65Zn, 99Mo и др.) широко используются для определения физических свойств почвы и запасов в ней элементов пищи растений, для изучения взаимодействия почвы и удобрений, процессов усвоения растениями питательных элементов из минеральных туков, поступления в растения минеральной пищи через листья и других вопросов почвоведения и агрохимии. Пользуются И. и. для выявления действия на растительный организм пестицидов (См. Пестициды), в частности гербицидов (См. Гербициды), что позволяет установить концентрацию и сроки обработки ими посевов. Применяя метод И. и., исследуют важнейшие биологические свойства с.-х. культур (при оценке и отборе селекционного материала) - урожайность, скороспелость, хладостойкость. В животноводстве изучают физиологические процессы, протекающие в организме животных, проводят анализ кормов на содержание токсичных веществ (малые дозы которых трудно определить химическими методами) и микроэлементов. При помощи И. и. разрабатывают приёмы автоматизации производственных процессов, например отделение корнеклубнеплодов от камней и комков почвы при уборке комбайном на каменистых и тяжёлых почвах.

Рис. 4. Схема опыта по изучению поглощения радиоактивных изотопов раздельно корнями и плодами арахиса: 1 - среда для корней; 2 - среда для плодов.

Рис. 1. Отложение радиоактивных изотопов стронция и фосфора в костях: 89Sr откладывается преимущественно в самой кости, 32P - в костном мозге.

Рис. 3. Избирательное накопление радиоизотопа серы (35S) в хрящевой ткани 20-дневного зародыша крысы: А - окрашенный срез; Б - радиоавтограф.

Рис. 2. Распределение радиоизотопа фосфора (32P) на поперечном срезе сахарной свёклы при нанесении изотопа на один из листьев растения.

ИЗОТОПНЫЕ ИНДИКАТОРЫ         
(меченые атомы) , радиоактивные (реже стабильные) нуклиды, которые используются в составе простых или сложных веществ для изучения химического, биологического и других процессов с помощью специальных методов (напр., масс-спектрометрия, радиометрия).
Индикаторы изотопные         

меченые атомы, вещества с повышенным содержанием одного из изотопов какого-либо элемента. Используются при различных исследованиях в химии, биологии, технике и др. См. Изотопные индикаторы.

Wikipedia

Меченые атомы

Меченые атомы (изотопные индикаторы) — изотопы, по своим свойствам (радиоактивности, атомной массе) отличающиеся от других изотопов данного элемента, которые добавляют к химическому соединению или смеси, где находится исследуемый элемент. Поведение меченых атомов характеризует поведение элемента в исследуемом процессе. В качестве меченых атомов используют как стабильные (устойчивые) изотопы, так и радиоактивные (неустойчивые) изотопы. Для регистрации радиоактивных меченых атомов применяют счетчики, ионизационные камеры; нерадиоактивные изотопы регистрируют с помощью масс-спектрографов.

Г. Е. Владимиров (1901—1960), известный биохимик, одним из первых применил радиоактивные изотопы (меченые соединения) для изучения обменных процессов в нервной и мышечной тканях. Метод меченых атомов применяют в химии, биологии, медицине, металлургии. Они позволяют проследить круговорот какого-либо элемента в природе, в процессе обмена веществ в организме, в химических реакциях, в производственных процессах.